Promotion of Alumina Scale Protected Iron-Base Oxide Dispersion Strengthened Alloys

Materials Science and Engineering, Iowa State University, Ames, IA 50011

Support from Department of Energy through Ames Laboratory

Objective

Investigate alloying additions to promote highly stable oxide dispersoids while maintaining alumina scale formation, where internal oxidation studies simulate exchange reaction effects of a single particle.

Background/Motivation

- Advanced—ultra supercritical (A-USC) coal fired plants will operate at 760°C and 35 MPa, which will require oxide dispersion strengthening (ODS) for Fe-based materials with superior oxidation resistance (AlO).

- Gas Atomization Reaction Synthesis (GARS) has previously been shown viable to make simplified nanopowders without Al. Fe-based ODS utilizing complex Y-Hf or Y-Ti dispersoids

- In order to test these alloying additions, chill cast alloys, compositions shown in Table 1, were created to simulate a powder particle

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Fe</th>
<th>Cr</th>
<th>Al</th>
<th>Y</th>
<th>Ti</th>
<th>Hf</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Base Alloy)</td>
<td>Bal</td>
<td>16</td>
<td>10</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2 (Ti Addition)</td>
<td>Bal</td>
<td>16</td>
<td>10</td>
<td>0.2</td>
<td>0.25</td>
<td>-</td>
</tr>
<tr>
<td>3 (Hf Addition)</td>
<td>Bal</td>
<td>16</td>
<td>10</td>
<td>0.2</td>
<td>-</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Table 1: Sample identification and additions in wt.%

- Chill cast microstructures have been shown through previous work to be analogous to a powder particle

Figure 1: GARS processing diagram

Figure 2: GARS exchange reaction: initial consolidation (left), prior particle boundary oxide dissociation (middle), dispersoid formation (right).

Figure 3: Oxide map for Fe-0.1Al Alloys at 800°C, in oxygen at 200 Torr.

- In order to operate at A-USC conditions, additions of Al are necessary for oxidation protection (See Figure 3)

- Hf has been shown to promote complex Y-Hf oxides, in Co-base alloys, suppressing less stable Y-Al oxides.

- X-ray samples were then machined from the bars and polished to a 1 μm finish using silicon carbide and diamond suspensions

- All samples were heat treated in air at 1600°C for 10 hours

- Serial grinding and x-ray analysis (Cu-Kα radiation) to determine a depth profile of phases

- In order to ensure even grinding, a polishing apparatus seen to the right was used

Figure 4: Powder particle from GARS produced Fe-base ODS alloy (left). As-cast structure from chill cast bars

Figure 5: X-Ray sample geometry (top left); mounted sample (bottom left); polishing apparatus (right)
OUTSTANDING POSTER AWARD

Results/Analysis

(1) Base Alloy (Fe-16Cr-10Al-0.2Y at%)

- Surface
- 25 µm
- α-Alumina
- α-Iron
- YAlO₃
- Fe₃Y₃

Both base alloy and titanium addition samples formed surface alumina followed by an undesirable layer of YAlO₃ highlighted by red ovals and arrows.

(2) Titanium Addition (Fe-16Cr-10Al-0.2Y-0.25Ti at%)

- Surface
- 25 µm
- α-Alumina
- α-Iron
- YAlO₃
- Fe₅Y₅

(3) Hafnium Addition (Fe-16Cr-10Al-0.2Y-0.25Hf at%)

- Surface
- 150 µm
- 400 µm
- α-Alumina
- α-Iron
- HfO₂
- Y₂HfO₇
- Fe₅Y₃

In hafnium addition Y₂HfO₇ dispersoids, noted with red boxes and arrows, formed throughout with an initial region of alumina and hafnia followed by hafnia. These properties are preferred for Al₂O₃ scale protected Fe-ODS alloys.

Future Work

- Calculate diffusion constants for Hf alloy through Rhine's packs to find heat treatment times for consolidated powders
- Using Hf alloy design create powders through GARS processing
 - Determine surface oxide formed during rapid solidification
 - Consolidate powders to form specimen for sample testing
- Oxidation and creep testing of consolidated alloys

References